Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

pencil
Узнай стоимость на индивидуальную работу!
icon Цены в 2-3 раза ниже
icon Мы работаем
7 дней в неделю
icon Только проверенные эксперты

Регрессионный анализ рынка труда

Тип Реферат
Предмет Математика
Просмотров
919
Скачиваний
710
Размер файла
187 б
Поделиться

Регрессионный анализ рынка труда

Содержание:

1. Введение.2

2. Теоретическая часть.

· Основные понятия

· Регрессионный анализ рынка труда

3

3

8

3. Практическая часть.9
4. Заключение.
5. Список использованной литературы.14

Введение.

В экономических исследованиях часто решают задачу выявления факторов, определяющих уровень и динамику экономического процесса. Такая задача чаще всего решается методами корреляционного, регрессионного, факторного и компонентного анализа.

Все многообразие факторов, которые воздействуют на изучаемый процесс, можно разделить на две группы: главные (определяющие уровень изучаемого процесса) и второстепенные. Последние часто имеют случайный характер, определяя специфические и индивидуальные особенности каждого объекта исследования.

Взаимодействие главных и второстепенных факторов и определяет колеблемость исследуемого процесса. В этом взаимодействии синтезируется как необходимое, типическое, определяющее закономерность изучаемого явления, так и случайное, характеризующее отклонение от этой закономерности. Случайные отклонения неизбежно сопутствуют любому закономерному явлению.

Для достоверного отображения объективно существующих в экономике процессов необходимо выявить существенные взаимосвязи и не только выявить, но и дать им количественную оценку. Этот подход требует вскрытия причинных зависимостей. Под причинной зависимостью понимается такая связь между процессами, когда изменение одного из них является следствием изменения другого.

Не все факторы, влияющие на экономические процессы, являются случайными величинами. Поэтому при анализе экономических Явлений обычно рассматриваются связи между случайными и неслучайными величинами. Такие связи называются регрессионными, а метод математической статистики, их изучающий, называется регрессионным анализом.

Теоретическая часть.

Основные понятия.

С целью математического описания конкретного вида зависимостей с использованием регрессионного анализа подбирают класс функций, связывающих результативный показатель y и аргументы x1, x2,…,хk , отбирают наиболее информативные аргу­менты, вычисляют оценки неизвестных значений параметров уравнения связи и анализируют точность полученного уравнения.
Функция f(x1, x2,…,хk ), описывающаязависимость условного среднего значения результативного признака у от заданных значений аргументов, называется функцией (уравнением) регрессии.

Термин "регрессия" (лат. - "regression" - отступление, возврат к чему-либо) введен английским психологом и антропологом Ф.Гальтпном и связан только со спецификой одного из первых конкретных примеров, в котором это понятие было использовано.

Обрабатывая статистические данные в связи с вопросом о наследственности роста, Ф.Гальтон нашел, что если отцыотклоняются от среднего роста всех отцов на xдюймов, то их сыновья отклоняютсяот среднего роста всех сыновей меньше, чем на x дюймов. Выявленная тенденция была названа «регрессией к среднему состоянию».

Термин регрессия широко используется в статистической литературе, хотя во многих случаях он недостаточно точно характеризует понятие статистической зависимости.

Для точного описанияуравнения регрессии необходимо знать услов­ный закон распределения результативного показателя у. В статистической практике такую информацию получить обычно не удается, поэтому ограничиваются поиском подходящих аппроксимаций для функции f( x1, x2,…,хk ), основанных на исходных статистических данных.

В рамках отдельных модельных допущений о типе распределения век­тора показателей (у, x1, x2,…,хk ) может быть получен общий вид уравнения регрессииf(x)=M(y/x) x=( x1, x2,…,хk ). Например, в предложении, что исследуемая совокупность показателей подчиняется (k + 1) - мерному нормальному закону распределения с вектором математических ожиданий

M =,

гдеMx =, my = MY

и ковариационной матрицей S = ,

гдеsyy = s2y = M (y-My);

Syx = ; Sxx = ;

sij = M (xi – Mxi);(xj – Mxj); sjj = sj = M (xj – Mxj).

Из этого следует, что уравнение регрессии (условное математическое ожидание) имеет вид:

M(y/x) = my + (x - Mx).

Таким образом, если многомерная случайная величина (у, x1, x2,…,хk ) подчиняется (k +1)-мерному нормальному закону распределения, то уравнение регрессии результативного показателя у по объясняющим переменным x1, x2,…,хk имеет линейный по х вид.

Однако в статистической практике обычно приходится ограничиваться поиском подходящих аппроксимаций для неизвестной истинной функции регрессии f(x), так как исследователь не располагает точным знанием условного закона распределения вероятностей анализируемого результатирующего показателя упри заданных эначениях аргументов х=х.

Рассмотрим взаимоотношение между истиной f(х)=M(y/x), модельной у и оценкой у регрессии.

Пусть результативный показатель у связан с аргументом х соотноше­нием::

y = + e,

где e - случайная величина, имеющая нормальный закон распределения, при­чем М e= 0 и

De = .

Истинная функция регрессии в этом случае имеет вид:

F(x) = M(y/x) = 2x.

Предположим, что точный вид истинного уравнения регрессии нам не известен, но мы располагаем девятъю наблюдениями над двумернойслучайной величиной, связанной соотношением уi = 2x+ ei, ипредcтавленной на рисунке:

у

f(x)
70

60

50

y
40

30

20

10

x
0

0 2 4 6 8 10

Взаимное расположение истинной f(x) и теоритической у модели регрессии.

Расположение точек на рисунке позволяет ограничиться классом линейных зависимостей вида: у = b0 + b1 x.

С помощью метода наименьших квадратов найдем оценку уравнения регрессии

у = b0 +b1x.

Дли сравнения на рисунке приводятся графики истинной функции регрессии f{х) =2x,теоретической аппроксимирующей функции рег­рессии = b0 + b1 x. К последней сходится по вероятности оценка уравнения регрессии при неограниченном увеличении объема выборки (n).

Поскольку мы ошиблись в выборе класса функции регрессии, что, к сожалению, достаточно часто встречается в практике статистических исследований, то наши статистические выводы и оценки не будут обла­дать свойством состоятельности, т.е., как бы

мы не увеличивали объем наблюдений, наша выборочная оценка не будет сходиться к истинной функции регрессии f(х).

Если бы мы правильно выбрали класс функций регрессии, то неточность в описании f(x) с помощью объяснялась бы только ограниченностью выборки и, следовательно, она могла бы быть сделана сколько угодно малой при n.

С целью наилучшего восстановления по исходным статистическим данным условного значения результатирующего показателя у(х) и неизвестной функции регрессии f(x) = M(y/x) наиболее часто используют следующие критерии адекватности (функции потерь).

1. Метод наименьших квадратов, согласно которому минимизируется квадрат отклонения наблюдаемых значений результативного показателя yi(i=1,2,…,n) от модельных значений i = f(xi, b), где b = (b0, b1,…,bk)- коэффициенты уравнения регрессии, xi– значение вектора аргументов в i-м наблюдении:

.

Решается задача отыскания оценки вектора b. Получаемая регрессия называется среднеквадратической.

2. Метод наименьших модулей, согласно которому минимизируется сумма абсолютных отклонений наблюдаемых значений результативного показателя от модульных значений = f(xi, b), т.е.

.

Получаемая регрессия называется среднеабсолютной (медианой).

3. Метод минимакса сводится к минимизации максимума модуля отклонения наблюдаемого значения результативного показателя yi от модельного значения f(xi, b), т.е.

.

Получаемая при этом регрессия называется минимаксной.

В практических положениях часто встречаются задачи, в которых изучается случайная величина у, зависящая от некоторого множества переменных x1, x2,…,хk и неизвестных параметров bj(j=0,1,2,…,k). Будем рассматривать (у, x1, x2,…,хk ) как

(k +1) – мерную генеральную совокупность, из которой взята случайная выборка объемов n, где (уi,xi1,xi2,…,xik)результат i-го наблюдения i=1,2,…,n. Требуется по результатам наблюдений оценить неизвестные параметры bj(j=0,1,2,…,k).

Описанная выше задача относится к задачам регрессионного анализа.

Регрессионным анализом называется метод статистического анализа зависимости случайной величины у от переменных xj(j=1,2,…,k), рассматриваемых в регрессионном анализе как неслучайные величины, независимо от истинного закона распределения xj.

Обычно предполагается, что случайная величина у имеет нормальный закон распределения с условным математическим ожиданием , являющимся функцией от аргументов xj(j=1,2,…,k)и постоянной, не зависящей от аргументов дисперсий , т.е. следует помнить, что требование нормальности закона распределения необходимо лишь для проверки значимости уравнения регрессии и его параметров bj, а также для интервального оценивания регрессии и его параметров bj. Для получения точечных оценок bj(j=0,1,2,…,k)этого условия не требуется.

В общем виде линейная модель регрессионного анализа имеет вид:

у = ,

где jj – некоторая функция его переменных x1, x2,…,хk ;

e - случайная величина с нулевым математическим ожиданием и дисперсией s

Примечание.

В регрессионном анализе под линейной моделью подразумевает модель, линейно зависящую о неизвестных параметров bj.

Собственно линейной будем называть модель, линейно зависящую как от параметров bj, так иот переменных хj.

В регрессионном методе вид уравнения регрессии выбирают исходя из анализа физической сущности изучаемого явления и результатов наблюдения.

Наиболее часто встречаются следующие виды уравнений регрессии:

· собственно линейное многомерное

= ;

· полиномиальное

= ;

· гиперболическое

= ;

· степенное

= .

Путем логарифмирования степенные уравнения регрессии могут быть преобразованы в линейные уравнения относительно параметров bj.

Логарифмируя, получим:

.

Пусть lgxj = uj для j=1,2,…,k; и , тогда после подстановки будем иметь собственно линейные уравнения регрессии:

= .

Путем подстановок и гиперболическое и полиномиальное уравнения могут быть преобразованы в собственно линейные, теория которых разработана наиболее полно.

Оценки неизвестных параметров уравнения регрессии находят обычно методом наименьших квадратов и свойствах оценок, найденных этим методом.

Регрессионный анализ рынка труда.

В общем виде задача статистики в области изучения взаимосвязей состоит не только в количественной оценке их наличия, направления и силы связи, но и в определении формы (аналитического выражения) влияния факторных признаков на результативный. Для ее решения применяют метод регрессионного анализа.

Задачами регрессионного анализа являются выбор типа модели (формы связи), установление степени влияния независимых переменных на зависимую и определение расчетных значений зависимой переменной (функции регрессии).
Решение всех названных задач приводит к необходимости комплексного использования этого метода.

Для характеристики влияния изменений Х на вариацию У служат методы регрессионного анализа. В случае парной линейной зависимости строится регрессионная модель:
Yi = ao + a1·Xi + ?i,i = 1,...,n,
где n - число наблюдений; ao , a1 - неизвестные параметры уравнения; ?i - ошибка случайной переменной У.
Уравнение регрессии записывается как
Уi теор = ao + a1·Xi,
где Уi теор - рассчитанное выравненное значение результативного признака после подстановки в уравнение Х.

Параметры ao и a1 оцениваются с помощью процедур, наибольшее распространение из которых получил метод наименьших квадратов. Его суть заключается в том, что наилучшие оценки ao и a1 получают, когда
?( Yi - Уi теор)? = min,
т.е. сумма квадратов отклонений эмпирических значений зависимой переменной от вычисленных по уравнению регрессии должна быть минимальной. Сумма квадратов отклонений является функцией параметров ao и a1. Ее минимизация осуществляется решением системы уравнений:
n ao + a1?X = ?У;
ao ?X + a1?X? = ?ХУ.

Важен смысл параметров: a1 - это коэффициент регрессии, характеризующий влияние, которое оказывает Х на У. Он показывает, на сколько единиц в среднем изменится У при изменении Х на одну единицу. Если a1 больше 0, то наблюдается положительная связь. Если a1 имеет отрицательное значение, то увеличение Х на единицу влечет за собой уменьшение У в среднем на a1. Параметр a1 обладает размерностью отношения У к Х.

Параметр ao - это постоянная величина в уравнении регрессии. Экономического смысла она не имеет, но в ряде случаев его интерпретируют как начальное значение У.

Рассмотрим регрессионную зависимость доли убыточных промышленных предприятий от показателей, характеризующих степень разгосударствления промышленности. Результаты расчетов приведены в табл. 1-8.

Таблица 1. Результаты анализа от 3 характеристик разгосударствления промышленности:

Множественный коэффициент корреляции (R)0,556
R-квадрат0,309
Нормированный R-квадрат0,281
Стандартная ошибка8,517
Наблюдения78
F-статистика11,046
DW-статистика1,036

Таблица 2. Коэффициенты линейной регрессии:

КоэффициентыСтандартная ошибкаt-статистикаP-Значение
Свободный член131,42816,0918,1680,000
Доля предприятий-0,5870,200-2,9330,004
Доля продукции-0,0400,159-0,2490,804
Доля работающих-0,2670,182-1,4680,146

Приведенные результаты показывают, что построенная регрессия в целом значима на высоком уровне (F = 11,046). Однако лишь связь доли убыточных предприятий промышленности с долей предприятий негосударственного сектора значимо отрицательна (Pv = 0,004). В то же время связь доли убыточных предприятий а с долей работающих на негосударственных промышленных предприятиях и долей продукции, производимой промышленными предприятиями негосударственного сектора, отрицательна, но незначима (Pv = 0,146 и 0,804, соответственно). Кроме того, значение статистики DW = 1,036 свидетельствует о наличии автокорреляции в остатках. Построим регрессию без показателя доли производимой продукции. Результаты приведены в табл. 3 и 4.

Таблица 3 . Результаты регрессионного анализа от 2 характеристик разгосударствления промышленности:

Множественный коэффициент корреляции (R)0,556
R-квадрат0,309
Нормированный R-квадрат0,290
Стандартная ошибка8,464
Наблюдения78
F-статистика16,747
DW-статистика1,035

Таблица 4. Коэффициенты линейной регрессии:

КоэффициентыСтандартная ошибкаt-статистикаP-Значение
Свободный член130,65215,6878,3290,000
Доля предприятий -0,5820,198-2,9410,004
Доля работающих-0,3030,109-2,7890,007

Как видно из приведенных результатов, в данном случае построенная регрессия значима даже на 1% уровне (F = 16,747). Регрессионные коэффициенты также значимы на 1% уровне. Однако значение статистики DW = 1,035 и в этом случае свидетельствует о наличии автокорреляции в остатках. Поэтому построим регрессию от всех трех показателей с учетом преобразования Кохрана-Орката, позволяющего избавиться от автокоррелированности остатков. Результаты приведены в табл. 5 и 6.

Таблица 5 . Результаты регрессионного анализа от 3 характеристик разгосударствления промышленности (П1, П2 и Р) с учетом преобразования Кохрана-Орката:

Множественный коэффициент корреляции (R)0,605
R-квадрат0,366
Нормированный R-квадрат0,331
Стандартная ошибка7,520
Наблюдения78
F-статистика13,880
DW-статистика2,220

Таблица 6 . Коэффициенты линейной регрессии с учетом преобразования Кохрана-Орката:

КоэффициентыСтандартная ошибкаt-статистикаP-Значение
Свободный член121,66713,4919,0160,000
Доля предприятий-0,5240,166-3,150-0,002
Доля продукции-0,0120,126-0,097-0,923
Доля работающих-0,2470,145-1,701-0,093

Приведенные результаты показывают, что построенная регрессия значительно лучше по всем параметрам регрессии, характеристики которой приведены в табл. П.5.6. и П.5.7: она в целом значима на высоком уровне (F = 13,880), множественной коэффициент корреляции равен 0,605 против 0,556. Связь доли убыточных предприятий промышленности с долей предприятий негосударственного сектора значимо отрицательна (Pv = 0,002). Связь доли убыточных предприятий с долей работающих на негосударственных промышленных предприятиях становится значимой на 10% уровне (Pv = 0,093). Однако связь с долей продукции, производимой промышленными предприятиями негосударственного сектора остается не значимой (Pv = 0,923). Поэтому построим регрессию без показателя доли производимой продукции. Результаты приведены в табл. 7 и 8.

Таблица 7. Результаты регрессионного анализа от 2 характеристик разгосударствления промышленности (П1 и Р) с учетом преобразования Кохрана-Орката:

Множественный коэффициент корреляции (R)0,605
R-квадрат0,366
Нормированный R-квадрат0,340
Стандартная ошибка7,468
Наблюдения78
F-статистика21,104
DW-статистика2,218

Таблица 8 . Коэффициенты линейной регрессии с учетом преобразования Кохрана-Орката:

КоэффициентыСтандартная ошибкаt-статистикаP-Значение
Свободный член121,32612,9459,3730,000
Доля предприятий-0,5220,163-3,1990,002
Доля работающих-0,2580,082-3,1550,002

Как видно из приведенных результатов, в данном случае построенная регрессия значима даже на 1% уровне (F = 21,104). Регрессионные коэффициенты значимы на 3% уровне.

Практическая часть.

- уравнение регрессии.

x12345678910
y1.351.096.463.155.807.28.078.128.9710.66

Приведем квадратное уравнение к линейной форме:

;

Запишем матрицу X.

Составим матрицу Фишера.

Система нормальных уравнений.

Решим ее методом Гаусса.

Уравнение регрессии имеет вид:

Оценка значимости коэффициентов регрессии.

Для проверки нулевой гипотезы используем критерий Стьюдента.

Коэффициенты значимые коэффициенты.

Проверка адекватности модели по критерию Фишера.

гипотеза о равенстве математического ожидания отвергается.

Проверка адекватности модели по коэффициенту детерминации или множественной корреляции.

Коэффициент детерминации :

- регрессионная модель адекватна.

Коэффициент множественной корреляции

Рассчитать и построить график уравнения прямолинейной регрессии для относительных значений PWC170 и времени челночного бега 3х10 м у 13 исследуемых и сделать вывод о точности расчета уравнений, если данные выборок таковы:
xi, кГ м/мин/кг ~ 15,6; 13,4; 17,9; 12,8; 10,7; 15,7; 11,7; 12,3; 12,3; 11,1; 14,3; 12,7; 14,4
yi, с ~ 6,9; 7,2; 7,1; 6,7; 7,6; 7,0; 6,4; 6,9; 7,7; 7,6; 7,9; 8,2; 6,8

Решение

1. Занести данные тестирования в рабочую таблицу и сделать соответствующие расчеты.

xixi - (xi - )2yiyi(yi)2(xi - )(yi)
15.62.14.416.9-0.30.09-0.63
13.4-0.10.017.2000
17.94.419.367.1-0.10.01-0.44
12.8-0.70.496.7-0.50.250.35
10.7-2.87.847.60.40.16-1.12
15.72.24.847.0-0.20.04-0.44
11.7-1.83.246.4-0.80.641.44
12.3-1.21.446.9-0.30.090.36
12.3-1.21.447.70.50.25-0.60
11.1-2.45.767.60.40.16-0.96
14.30.80.647.90.70.490.56
12.7-0.80.648.211-0.80
14.40.90.816.8-0.40.16-0.36
= 13.5=50,92= 7,2=3,34= -2,64

2. Рассчитать конечный вид уравнений прямолинейной регрессии по формулам (2) и (3):

(2)
(3)

Т.е.

1. при х = 12,8 кГм/мин/кг у =7,235 с » 7,2 с;

2. при у = 6,7 с х = 13,895 с » 13,9 кГм/мин/кг.

8. На основании произведенных расчетов и графического изображения уравнения регрессии сделать вывод.

Вывод:
1) в исследуемой группе наблюдается недостоверная обратная взаимосвязь между данными относительных значений PWC170 и времени челночного бега 3х10 м, т.к. rху = -0,20 < rst = 0,55 для К= 11 при = 95%;
2) относительная погрешность функции ух = 7,875 – 0,05х меньше (7,22%), а, следовательно, прогноз результата в челночном беге по данным относительных значений пробы PWC170 более точен;
3) на графике линии уравнения регрессии расположены почти под прямым углом, так как значения коэффициента корреляции близки к нулю.

Список использованной литературы:

1. Айвазян С.А., Бежаева З.И., Староверов О.В. Классификация многомерных наблюдений. – М.: Статистика, 1974. – 240с.

2. Андерсон Т. Введение в многомерный статистический анализ / Пер. с англ. – М.: ГИФМЛ, 1963. – 500с.

3. Болч Б., Хуань К. Многомерные статистические методы экономики / Пер. с англ. – М.: Статистика, 1979. – 317с.

4. Дубров А.М. Последовательный анализ в статистической обработке информации. – М.: Статистика, 1976 – 160с.

5. Кендалл М.., Стюарт А. Статистические выводы и связи. – М.: Наука, 1973.

6. Маленво Э. Статистические методы эконометрии / Пер. с фр.: Вып. 1. – М.: Статистика, 1975. – 423с.

7. Рао С.Р. Линейные статистические методы и их применение / Пер. с англ. – М.: Наука, 1968. – 548с.



Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Экономика
Маркетинг
Информатика
icon
109398
рейтинг
icon
2694
работ сдано
icon
1235
отзывов
avatar
Математика
Физика
История
icon
102992
рейтинг
icon
5268
работ сдано
icon
2368
отзывов
avatar
Химия
Экономика
Биология
icon
74112
рейтинг
icon
1857
работ сдано
icon
1171
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
48 857 оценок star star star star star
среднее 4.9 из 5
КГТА им.В.А. Дегтярёва
Работа выполнена профессионально и раньше срока. Советую исполнителя как специалиста.
star star star star star
ННГАСУ
С Кристиной, уже во второй раз сотрудничаю на перспективной почве, и вновь успешно. Очень ...
star star star star star
ПримИЖТ (филиал ДВГУПС)
Это мой первый опыт в покупке реферата. Работа Павла мне очень понравилась . Заказ был вы...
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Нужно заполнить таблицу

Отчет по практике, Экономика

Срок сдачи к 30 нояб.

1 минуту назад

Отчет производственной практики в муниципальное бюджетное учреждение...

Отчет по практике, государственное и муниципальное управление

Срок сдачи к 31 дек.

3 минуты назад

Финансы

Доклад, Экономика

Срок сдачи к 23 дек.

6 минут назад

Тема “Понятие государства, его функции“

Реферат, История белорусской государственности

Срок сдачи к 30 нояб.

7 минут назад

Решить тест дистанционный.

Тест дистанционно, теория менеджмента

Срок сдачи к 29 нояб.

8 минут назад

Написать план и пересказ краткий

Другое, Литература

Срок сдачи к 30 нояб.

11 минут назад

Ответить на вопрос

Контрольная, анализ финансово-хозяйственной деятельности

Срок сдачи к 4 дек.

11 минут назад

основы светотехники. решить 6-7 задач

Решение задач, Физика

Срок сдачи к 7 дек.

11 минут назад

Решить задачу по пожарной безопасности

Решение задач, БЖД

Срок сдачи к 1 дек.

11 минут назад

тема бумага и бумажные изделия

Диплом, товароведение

Срок сдачи к 15 дек.

11 минут назад

Потребление и инвестиции на современном этапе развития россии

Реферат, экономика Башкортостана

Срок сдачи к 3 дек.

11 минут назад

педагогика

Контрольная, Педагогика

Срок сдачи к 29 нояб.

11 минут назад

Итоговый тест

Тест дистанционно, Основы строительной климатологии, теплотехники, акустики и светотехники

Срок сдачи к 29 нояб.

11 минут назад

Разработка маршрутной технологической карты

Другое, Технология производства мехатронных систем

Срок сдачи к 7 дек.

11 минут назад

За договором купівлі-продажу мале підприємство «агва» придбало у тов...

Решение задач, Цивільне право

Срок сдачи к 29 нояб.

11 минут назад

Решить 1 задачу

Решение задач, анализ финансово-хозяйственной деятельности

Срок сдачи к 4 дек.

11 минут назад

Не успеваю , помогите пожалуйста , последнее...

Решение задач, Сопромат

Срок сдачи к 16 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход или
регистрация
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно