Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

pencil
Узнай стоимость на индивидуальную работу!
icon Цены в 2-3 раза ниже
icon Мы работаем
7 дней в неделю
icon Только проверенные эксперты

Вычисление характеристических многочленов собственных значений и собственных векторов

Тип Реферат
Предмет Математика
Просмотров
444
Скачиваний
616
Размер файла
96 б
Поделиться

Вычисление характеристических многочленов собственных значений и собственных векторов

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ

СУМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

КАФЕДРА ИНФОРМАТИКИ

Курсовая работа

по дисциплине «Численные методы»

на тему:

«Вычисление характеристических многочленов, собственных значений и собственных векторов»

Сумы, 2005

Содержание

СОДЕРЖАНИЕ

ТЕОРЕТИЧЕСКИЕ ДАННЫЕ

ВВЕДЕНИЕ

МЕТОД ДАНИЛЕВСКОГО

УКАЗАНИЯ ПО ПРИМЕНЕНИЮ ПРОГРАММЫ

ПРОГРАММНАЯ РЕАЛИЗАЦИЯ

АНАЛИЗ ПРОГРАММЫ

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ


Теоретические данные

Введение

Большое количество задач с механики, физики и техники требует нахождение собственных значений и собственных векторов матриц, т.е. таких значений λ, для которых существует нетривиальное решение однородной системы линейных алгебраических уравнений . Тут А-действительная квадратичная матрица порядка n с элементами ajk, а --вектор с компонентами x1, x2,…, xn Каждому собственному значению λi соответствует хотя бы одно нетривиальное решение. Если даже матрица А действительная, ей собственные числа (все или некоторые) и собственные векторы могут быть недействительными. Собственные числа являются корнями уравнения , где Е - единичная матрица порядка n

или

Данное уравнение называется характеристическим уравнением матрицы А. Собственным векторам , которым соответствует собственному значению λi, называют ненулевое решение однородной системы уравнений . Таким образом, задача нахождения собственных чисел и собственных векторов сводится к нахождению коэффициентов характеристического уравнения, нахождению его корней и нахождению нетривиального решения системы.

Метод Данилевского

Простой и изысканный метод нахождения характеристического многочлена предложил А.М.Данилевский. Рассмотрим идею метода. Рассмотрим матрицуA

Для которой находится характеристический многочлен, при помощи подобных преобразований преобразуется к матрице

,

которая имеет нормальную форму Фробениуса, то есть матрицаимеет в явном виде в последнем столбце искомые коэффициенты характеристического уравнения. Т. к. подобные матрицы имеют один и тот же характеристический многочлен, а

, то и .

Поэтому для обоснования метода достаточно показать, каким образом из матрицы A строится матрица P.

Подобные преобразования матрицы A к матрице P происходят последовательно. На первом шаге матрица А преобразовывается к подобной до неё матрице А(1), в которой предпоследний столбец имеет необходимый вид. На втором шаге матрица А(1) преобразовывается на подобную к ней матрицу А(2), в которой уже два предпоследних столбца имеют необходимый вид, и т.д.

На первом шаге матрица А умножается справа на матрицу

и слева на матрицу ей обратную

Первый шаг даёт

,

где

На втором шаге матрица А(1) умножается справа на матрицу

и слева на обратную к ней матрицу

Очевидно, что элементы матрицы

.

Это означает, что два предпоследних столбца матрицы А(2) имеют необходимый вид. Продолжая этот процесс, после n-1 шагов придем к матрице

,

которая имеет форму Фробениуса и подобная к входной матрице А. При этом на каждом шаге элементы матрицы А(j) находятся по элементам матрицы А(j-1) также, как мы находили элементы матрицы А(2) по элементам А(1). При этом предпологается, что все элементы отличные от нуля. Если на j-ом шаге окажется, что , то продолжать процесс в таком виде не будет возможно. При этом могут возникнуть два случая:

1. Среди элементов есть хотя бы один, отличный от нуля, например . Для продолжения процесса поменяем в А(j) местами первый и -й строчки и одновременно 1-й и -й столбцы. Такое преобразование матрицы А(j) будет подобным. После того, как получим матрицу , процесс можно продолжать, т.к. столбцы матрицы А(j),приведённые к необходимому виду не будут испорчены.

2. Все элементы равны нулю. Тогда матрица А(j) имеет вид , где F- квадратичная матрица порядка j, которая имеет нормальный вид Фробениуса; В—квадратная матрица порядка n-j, но , то есть характеристический многочлен матрицы F является делителем характеристического многочлена матрицы А. Для нахождения характеристического многочлена матрицы А необходимо еще найти характеристический многочлен матрицы В, для которой используем этот же метод.

Подсчитано, что количество операций умножения и деления, необходимых для получения характеристического многочлена матрицы порядка n составляет n(n-1)(2n+3)/2.

На данном этапе работы мы получили характеристический полином, корнями которого будут собственные числа матрицы А. Процедура нахождения корней полинома n-ой степени не проста. Поэтому воспользуемся пакетом MathCAD Professional для реализации данной задачи. Для поиска корней обычного полинома р(х) степени n в Mathcad включена очень удобная функция polyroots(V). Она возвращает вектор всех корней многочлена степени n, коэффициенты которого находятся в векторе V, имеющим длину равную n+1. Заметим, что корни полинома могут быть как вещественными, так и комплексными числами. Таким образом мы имеем собственные числа, при помощи которых мы найдём собственные векторы нашей матрицы А. Для нахождения собственных векторов воспользуемся функцией eigenvec(A,vi), где А-исходная матрица, vi-собственное число, для которого мы ищем собственный вектор. Данная функция возвращает собственный вектор дня vi.

Указания по применению программы

Данная курсовая работа выполнена на языке программирования Pascal. В курсовую работу входит файлdanil.exe. Danil.exe предназначен для нахождения характеристического полинома методом Данилевского. Входными параметрами является размерность матрицы и сама матрица, а выходным — характеристический полином.

Программная реализация

Программный кодпрограммы danil.exe

uses wincrt;

label 1;

type mas=array[1..10,1..10]of real;

var A,M,M1,S:mas;

z,max:real;

f,jj,tt,ww,v,h,b,y,i,j,w,k,e,l,q,x,u:byte;

p,o:array[1..10]of real;

t:array [1..10]of boolean;

procedure Umnogenie(b,c:mas; n:byte; var v:mas);

var i,j,k:byte;

begin

for i:=1 to n do

for j:=1 to n do

begin

v[i,j]:=0;

for k:=1 to n do

v[i,j]:=b[i,k]*c[k,j]+v[i,j];

end;

end;

procedure dan(n:byte; var a:mas);

label 1,2;

var y:byte;

begin

For y:=1 to n-1 do

begin

if a[1,n]=0 then

begin

if y>1 then begin

max:=abs(a[1,n]);

w:=1;

for i:=1 to n-y do

if abs(a[i,n])>max then begin max:=abs(a[i,j]); w:=i; end;

if max=0 then

begin

for l:=n downto n-y+1 do

begin

p[f]:=a[l,n];

t[f]:=false;

f:=f-1;

end;

t[f+1]:=true;

x:=x+1;

u:=n-y;

if y=n-1 then begin o[q]:=a[1,1]; q:=q+1; end else dan(u,a);

goto 2;

end;

for j:=1 to n do

begin

z:=a[1,j];

a[1,j]:=a[w,j];

a[w,j]:=z;

end;

for k:=1 to n do

begin

z:=a[k,1];

a[k,1]:=a[k,w];

a[k,w]:=z;

end;

goto 1;

end

else

begin

max:=abs(a[1,2]);

w:=1;e:=2;

for i:=1 to n-1 do

if abs(a[i,n])>max then begin max:=abs(a[i,j]); w:=i; e:=n; end;

for j:=2 to n do

if abs(a[1,j])>max then begin max:=abs(a[i,j]); w:=1; e:=j; end;

if abs(a[n,1])>max then begin max:=abs(a[n,1]); w:=n; e:=1; end;

if max=0 then

begin

o[q]:=a[n,n];

q:=q+1;

u:=n-1;

if n=2 then begin o[q]:=a[1,1]; q:=q+1; o[q]:=a[n,n]; q:=q+1; end else dan(u,a);

goto 2;

end;

if (w>1) and (e=n) then

begin

for j:=1 to n do

begin

z:=a[1,j];

a[1,j]:=a[w,j];

a[w,j]:=z;

end;

for k:=1 to n do

begin

z:=a[k,1];

a[k,1]:=a[k,w];

a[k,w]:=z;

end;

goto 1;

end;

if (w=n) and (e=1) then

begin

for j:=1 to n do

begin

z:=a[1,j];

a[1,j]:=a[n,j];

a[n,j]:=z;

end;

for k:=1 to n do

begin

z:=a[k,1];

a[k,1]:=a[k,n];

a[k,n]:=z;

end;

goto 1;

end;

if w=1 then

begin

for j:=1 to n do

begin

z:=a[n,j];

a[n,j]:=a[e,j];

a[e,j]:=z;

end;

for k:=1 to n do

begin

z:=a[k,n];

a[k,n]:=a[k,e];

a[k,e]:=z;

end;

goto 1;

end;

end;

end;

1:

for i:=1 to n do

for j:=1 to n do

if i<>(j+1) then M[i,j]:=0

else M[i,j]:=1;

for i:=1 to n do

for j:=1 to n do

if (i+1)<>j then M1[i,j]:=0

else M1[i,j]:=1;

for i:=1 to n do

if i<>n then begin M[i,n]:=a[i,n]; M1[i,1]:=-a[i+1,n]/a[1,n]; end

else begin M[i,n]:=a[i,n]; M1[i,1]:=1/a[1,n]; end;

Umnogenie(M1,A,n,S);

Umnogenie(S,M,n,A);

if y=n-1 then

begin

for l:=n downto 1 do

begin

p[f]:=a[l,n];

t[f]:=false;

f:=f-1;

end;

t[f+1]:=true;

x:=x+1;

end;

end;

2:

end;

begin

writeln('Vvedite razmernost` matrici A');

readln(ww);

f:=ww;

for i:=1 to ww do

begin

for j:=1 to ww do

begin

write('a[',i,j,']=');

Readln(A[i,j]);

end;

end;

q:=1;

x:=0;

dan(ww,a);

for i:=1 to q-1 do

writeln('Koren` har-ogo ur-iya=',o[i]:2:2);

writeln;

i:=ww+1;

if (x=1)or(x>1) then

begin

for v:=1 to x do

begin

tt:=0;

repeat

tt:=tt+1;

i:=i-1;

until t[i]<>false;

write('l^',tt,' + ');

for jj:=ww downto i do

begin

tt:=tt-1;

write(-p[jj]:2:2,'*l^',tt,' + ');

end;

ww:=i-1;

writeln;

end;

end;

end.


Получение формы Жордано: form.exe

uses wincrt;

label 1;

type mas=array[1..10,1..10]of real;

var A,M,M1,S,R,R1,A1:mas;

z,max:real;

f,jj,tt,ww,v,h,b,y,i,j,w,k,e,l,q,x,u,n1:byte;

p,o:array[1..10]of real;

t:array [1..10]of boolean;

procedure Umnogenie(b,c:mas; n:byte; var v:mas);

var i,j,k:byte;

begin

for i:=1 to n do

for j:=1 to n do

begin

v[i,j]:=0;

for k:=1 to n do

v[i,j]:=b[i,k]*c[k,j]+v[i,j];

end;

end;

procedure dan(n:byte; var a:mas);

label 1,2;

var y:byte;

begin

For y:=1 to n-1 do

begin

if a[1,n]=0 then

begin

if y>1 then begin

max:=abs(a[1,n]);

w:=1;

for i:=1 to n-y do

if abs(a[i,n])>max then begin max:=abs(a[i,j]); w:=i; end;

if max=0 then

begin

for l:=n downto n-y+1 do

begin

p[f]:=a[l,n];

t[f]:=false;

f:=f-1;

end;

t[f+1]:=true;

x:=x+1;

u:=n-y;

if y=n-1 then begin o[q]:=a[1,1]; q:=q+1; end else dan(u,a);

goto 2;

end;

for j:=1 to n do

begin

z:=a[1,j];

a[1,j]:=a[w,j];

a[w,j]:=z;

end;

for k:=1 to n do

begin

z:=a[k,1];

a[k,1]:=a[k,w];

a[k,w]:=z;

end;

goto 1;

end

else

begin

max:=abs(a[1,2]);

w:=1;e:=2;

for i:=1 to n-1 do

if abs(a[i,n])>max then begin max:=abs(a[i,j]); w:=i; e:=n; end;

for j:=2 to n do

if abs(a[1,j])>max then begin max:=abs(a[i,j]); w:=1; e:=j; end;

if abs(a[n,1])>max then begin max:=abs(a[n,1]); w:=n; e:=1; end;

if max=0 then

begin

o[q]:=a[n,n];

q:=q+1;

u:=n-1;

if n=2 then begin o[q]:=a[1,1]; q:=q+1; o[q]:=a[n,n]; q:=q+1; end else dan(u,a);

goto 2;

end;

if (w>1) and (e=n) then

begin

for j:=1 to n do

begin

z:=a[1,j];

a[1,j]:=a[w,j];

a[w,j]:=z;

end;

for k:=1 to n do

begin

z:=a[k,1];

a[k,1]:=a[k,w];

a[k,w]:=z;

end;

goto 1;

end;

if (w=n) and (e=1) then

begin

for j:=1 to n do

begin

z:=a[1,j];

a[1,j]:=a[n,j];

a[n,j]:=z;

end;

for k:=1 to n do

begin

z:=a[k,1];

a[k,1]:=a[k,n];

a[k,n]:=z;

end;

goto 1;

end;

if w=1 then

begin

for j:=1 to n do

begin

z:=a[n,j];

a[n,j]:=a[e,j];

a[e,j]:=z;

end;

for k:=1 to n do

begin

z:=a[k,n];

a[k,n]:=a[k,e];

a[k,e]:=z;

end;

goto 1;

end;

end;

end;

1:

for i:=1 to n do

for j:=1 to n do

if i<>(j+1) then M[i,j]:=0

else M[i,j]:=1;

for i:=1 to n do

for j:=1 to n do

if (i+1)<>j then M1[i,j]:=0

else M1[i,j]:=1;

for i:=1 to n do

if i<>n then begin M[i,n]:=a[i,n]; M1[i,1]:=-a[i+1,n]/a[1,n]; end

else begin M[i,n]:=a[i,n]; M1[i,1]:=1/a[1,n]; end;

Umnogenie(M1,A,n,S);

Umnogenie(S,M,n,A);

if y=n-1 then

begin

for l:=n downto 1 do

begin

p[f]:=a[l,n];

t[f]:=false;

f:=f-1;

end;

t[f+1]:=true;

x:=x+1;

end;

end;

2:

end;

procedure ObrMatr(A:mas;Var AO:mas; n:byte);

const e=0.00001;

var i,j:integer;

a0:mas;

procedure MultString(var A,AO:mas;i1:integer;r:real);

var j:integer;

begin

for j:=1 to n do

begin

A[i1,j]:=A[i1,j]*r;

AO[i1,j]:=AO[i1,j]*r;

end;

end;

procedure AddStrings(var A,AO:mas;i1,i2:integer;r:real);

{Процедура прибавляет к i1 строке матрицы ai2-ю умноженную на r}

var j:integer;

begin

for j:=1 to n do

begin

A[i1,j]:=A[i1,j]+r*A[i2,j];

AO[i1,j]:=AO[i1,j]+r*AO[i2,j];

end;

end;

function Sign(r:real):shortint;

begin

if (r>=0) then sign:=1

elsesign:=-1;

end;

begin {начало основной процедуры}

for i:=1 to n do

for j:=1 to n do

a0[i,j]:=A[i,j];

for i:=1 to n do

begin{К i-той строке прибавляем (или вычитаем)

j-тую строку взятую со знаком i-того

элемента j-той строки. Таким образом,

на месте элемента a[i,i] возникает сумма

модулей элементов i-того столбца (ниже i-той строки)

взятая со знаком бывшего элемента a[i,i],

равенство нулю которой говорит о несуществовании

обратной матрицы }

for j:=i+1 to n do

AddStrings(A,AO,i,j,sign(A[i,i])*sign(A[j,i])); { Прямой ход }

if (abs(A[i,i])>e) then

begin

MultString(a,AO,i,1/A[i,i]);

for j:=i+1 to n do

AddStrings(a,AO,j,i,-A[j,i]);

end

elsebeginwriteln('Обратной матрицы не существует.');

halt;

end

end;{Обратный ход:}

if (A[n,n]>e) then begin

for i:=n downto 1 do

for j:=1 to i-1 do

begin

AddStrings(A,AO,j,i,-A[j,i]);

end; end

elsewriteln('Обратной матрицы не существует.');

end;


procedure EdMatr(Var E:mas; n:byte);

var i,j:byte;

begin

for i:=1 to n do

for j:=1 to n do

if i<>j then E[i,j]:=0 else E[i,i]:=1;

end;

{procedure UmnogMatr(A,F:mas; Var R:mas; n:byte);

Var s:real;

l,i,j:byte;

begin

for i:=1 to n do

for j:=1 to n do

begin

s:=0;

for l:=1 to n do

s:=s+A[i,l]*F[l,j];

R[i,j]:=s;

end;

end; }

begin

writeln('Vvedite razmernost` matrici A');

readln(ww);

f:=ww;

n1:=ww;

for i:=1 to ww do

begin

for j:=1 to ww do

begin

write('a[',i,j,']=');

Readln(A[i,j]);

A1[i,j]:=A[i,j];

end;

end;

q:=1;

x:=0;

dan(ww,a);

for i:=1 to q-1 do

writeln('Koren` har-ogo ur-iya=',o[i]:2:2);

writeln;

i:=ww+1;

if (x=1)or(x>1) then

begin

for v:=1 to x do

begin

tt:=0;

repeat

tt:=tt+1;

i:=i-1;

until t[i]<>false;

write('l^',tt,' + ');

for jj:=ww downto i do

begin

tt:=tt-1;

write(-p[jj]:2:2,'*l^',tt,' + ');

end;

ww:=i-1;

writeln;

end;

end;

for i:=1 to n1 do

begin

for j:=1 to n1 do

read(R[i,j]);

readln;

end;

EdMatr(R1,n1);

ObrMatr(R,R1,n1);

Umnogenie(R1,A1,n1,A);

Umnogenie(A,R,n1,M1);

for i:=1 to n1 do

begin

for j:=1 to n1 do

write(' ',M1[i,j]:2:3,' ');

writeln;

end;

end.

Анализ программы

Протестируем работу программы на примере. Пусть имеем матрицу А

Характеристический полином имеет вид:

Собственные числа 20.713, 4.545, 2.556, -5.814

Собственные векторы , ,,

Список используемой литературы

Я.М.Григоренко, Н.Д.Панкратова «Обчислювальні методи» 1995р.

В.Д.Гетмнцев «Лінійна алгебра і лінійне програмування»2001р.

Д.Мак-Кракен, У.Дорн «Программирование на ФОРТРАНЕ» 1997г.

http://alglib.manual.ru/eigen/danilevsky.php

http://doors.infor.ru/allsrs/alg/index.html


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Экономика
Маркетинг
Информатика
icon
110207
рейтинг
icon
2709
работ сдано
icon
1239
отзывов
avatar
Математика
Физика
История
icon
103893
рейтинг
icon
5284
работ сдано
icon
2381
отзывов
avatar
Химия
Экономика
Биология
icon
74557
рейтинг
icon
1860
работ сдано
icon
1175
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
48 903 оценки star star star star star
среднее 4.9 из 5
МГУ
Делает идеально , не слишком заумно, максимально подробно, все включено!)
star star star star star
Волгоградский государственный университет
Классно все сделал. Очень быстро. Красавчик. Буду еще обращаться к нему за работами.
star star star star star
Московский Университет имени С.Ю. Витте
Спасибо огромное исполнителю, работа выполнена очень быстро, без замечаний , оценка 90 бал...
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

2 контрольные работы с решением

Контрольная, Математика

Срок сдачи к 14 дек.

только что

Добрый день, дипломную работу нужно написать по методическому...

Диплом, Гражданское правовой

Срок сдачи к 4 янв.

1 минуту назад

решить задачи

Лабораторная, статистическое моделирование

Срок сдачи к 12 дек.

1 минуту назад

Выполнить задание "4" по математике

Контрольная, Высшая математика

Срок сдачи к 9 дек.

1 минуту назад

Написать курсовую по кадровому аудиту, максимальнл легкая тема

Курсовая, Кадровый аудит

Срок сдачи к 20 дек.

2 минуты назад

Электроэнергетика и электротехника

Тест дистанционно, силовая электроника

Срок сдачи к 12 дек.

2 минуты назад

Контрольная(Реферат)

Контрольная, Информационные технологии в управлении персоналом

Срок сдачи к 14 дек.

2 минуты назад

Выполнить работу по сопромату

Контрольная, Сопротивление материалов

Срок сдачи к 16 дек.

3 минуты назад

3 чертежа в автокаде и 4 в компасе

Чертеж, Компас и автокад

Срок сдачи к 24 дек.

3 минуты назад

Реферат не менее 15 страниц

Контрольная, безопасность жизнедеятельности

Срок сдачи к 30 дек.

3 минуты назад

6 теоретических вопросов и 4 задачи

Контрольная, безопасность жизнедеятельности

Срок сдачи к 20 дек.

3 минуты назад

кейс

Другое, Английский язык в юриспруденции

Срок сдачи к 14 дек.

4 минуты назад

Решить 5 задач по теоретической механике

Решение задач, теоретическая механика

Срок сдачи к 14 дек.

4 минуты назад

Задачи(прикладная механика)

Решение задач, прикладная механика

Срок сдачи к 13 дек.

4 минуты назад

Ислам в русской литературе 12 века

Диплом, Тиляват, Ислам в русской литературе 12 века

Срок сдачи к 30 дек.

5 минут назад

Онлайн помощь по микропроцессорная техника

Онлайн-помощь, Электроника

Срок сдачи к 10 дек.

5 минут назад

Выдержать весь текст по правилам

Онлайн-помощь, Информатика

Срок сдачи к 9 дек.

5 минут назад

Сделать Реферат

Реферат, Экология

Срок сдачи к 16 дек.

6 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход или
регистрация
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно