Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

pencil
Узнай стоимость на индивидуальную работу!
icon Цены в 2-3 раза ниже
icon Мы работаем
7 дней в неделю
icon Только проверенные эксперты

Метод вращений решения СЛАУ

Тип Реферат
Предмет Математика
Просмотров
707
Скачиваний
581
Размер файла
107 б
Поделиться

Метод вращений решения СЛАУ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО И ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«МАГНИТОГОРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Г. И. НОСОВА»

Кафедра вычислительной техники и прикладной математики

КУРСОВАЯ РАБОТА

по дисциплине: «Вычислительная математика»

на тему: «Метод вращений решения СЛАУ»

Исполнитель: Сысоев Н.В,, студент 2 курса, АВ-09-1.

Руководитель: Филиппов Е. Г.

Магнитогорск, 2011.


Содержание

Введение

1 Теоретический обзор

1.1 Прямые методы

1.2 Метод Гаусса

1.2.1 Описание метода

1.2.2 Сходимость метода простой итерации

1.2.3 Апостериорная оценка погрешности

1.2.4 Пример

1.3 Метод вращений линейных систем

1.3.1 Описание метода

1.3.2 Контроль точности и уточнение приближенного решения в рамках прямого метода

1.3.3 Апостериорная оценка погрешности

1.3.4 Пример

1.4 Метод релаксации

1.4.1 Пример

2 Практическая часть

2.1 Таблица идентификаторов

2.2 Листинг программы

2.3 Пример

2.4 Сравнительная таблица

Заключение

Библиографический список


Введение

Как утверждается в книге известного американского математика Валяха, 75% всех расчетных математических задач приходится на решение СЛАУ. Это не удивительно, так как математические модели тех или иных явлений или процессов либо сразу строятся как линейные алгебраические, либо сводятся к таковым посредством дискретизации и/или линеаризации. Поэтому трудно переоценить роль, которую играет выбор эффективного способа решения СЛАУ. Современная вычислительная математика располагает большим арсеналом методов, а математическое обеспечение ЭВМ – многими пакетами прикладных программ, позволяющих решать различные возникающие на практике линейные системы. Чтобы ориентироваться среди методов и программ и в нужный момент сделать оптимальный выбор нужно разбираться в основе построений методов и алгоритмов, учитывающих специфику постановок задач, знать их сильные и слабые стороны и границы применимости.


1 Теоретический обзор

1.1 Прямые методы

математический модель итерация погрешность

Все методы решения линейных алгебраических задач можно разбить на два класса: прямые и итерационные. Прямые методы – это такие методы, которые приводят к решению за конечное число арифметических операций. Если операции реализуются точно, то и решение также будет точным (в связи с чем к классу прямых методов применяют название точные методы). Итерационные методы – это методы в которых точное решение может быть получено лишь в результате бесконечного повторения единообразных действий.

Эффективность способов решения системы

или

иначе, векторно-матричных уравнений Ах=f, где f=(f1, f2, …,fn)T – вектор свободных членов и

х=( х1, х2, …,хn)T – вектор неизвестных, а – вещественная n×n-матрица коэффициентов данной системы, во многом зависит от структуры и свойств матрицы А : размера, обусловленности, симметричности, заполненности и др.

Так размерность системы (т.е число n) является главным фактором, заставляющим вычислителей отвернуться от весьма привлекательных в теоретическом плане и приемлемых на практике при небольших n формул Крамера.


1.2 Метод Гаусса

1.2.1 Описание метода

Рассмотрим один из самых распространенных методов решения СЛАУ – метод Гаусса. Этот метод (который называют также методом последовательного исключения неизвестных) известен в различных вариантах уже более 2000 лет.

Вычисления с помощью метода Гаусса состоят из двух основных этапов, называемых прямым ходом и обратным ходом. Прямой ход метода Гаусса заключается в последовательном исключении неизвестных из системы (1):

для преобразования её к эквивалентной системе с верхней треугольной матрицей. Вычисления значений неизвестных производят на этапе обратного хода.

1.2.2 Алгоритм.

1.2.3 Апостериорная оценка погрешности.

1.2.4 Пример

1.3 Метод вращений линейных систем

1.3.1 Описание метода.

Как и в методе Гаусса, цель прямого хода преобразований в этом методе – приведение системы к треугольному виду последовательным обнулением поддиагональных элементов сначала первого столбца, затем второго и т.д.

Пусть с1 и s1 – некоторые отличные от нуля числа. Умножим первое уравнение исходной системы (1) на с1, второе на s1 и сложим их; полученным уравнением заменим первое уравнение системы. Затем первое уравнение исходной системы умножаем на –s1, второе – на c1 и результатом их сложения заменим второе уравнение. Таким образом, первые два уравнения (1) заменяются уравнениями

Отсюда .

Эти числа можно интерпретировать как косинус и синус некоторого угла (отсюда название метод вращений, каждый шаг такого преобразования можно рассматривать как вращение расширенной матрицы системы в плоскости обнуляемого индекса).

В результате преобразований получим систему


где

Далее первое уравнение системы заменяется новым, полученным сложением результатов умножения первого и третьего уравнений соотведлтственно на

а третье – уравнением, полученным при сложении результатов умножения тех же уравнений соответственно на –s2 и с2. Получим систему

где

Выполнив преобразование m-1 раз, придем к системе

Вид полученной системы такой же, как после первого этапа преобразований методом Гаусса. Эта система обладает следующим свойством: длина любого вектора-столбца (эвклидова норма) расширенной матрицы остается такой же, как у исходной матрицы. Следовательно, при выполнении преобразований не наблюдается рост элементов.

Далее по этому же алгоритму преобразуется матрица

и т.д.

В результате m-1 этапов прямого хода система будет приведена к треугольному виду.


Нахождение неизвестных не отличается от обратного хода метода Гаусса.

Треугольная, точнее, трапециевидная структура последней системы позволяет последовательно одно за другим вычислять значения неизвестных, начиная с последнего:

1.3.2 Контроль точности и уточнение приближенного решения в рамках прямого метода

Прямые методы часто приводят к точному решению СЛАУ при точном выполнении предусматриваемых соответствующими алгоритмами арифметических операций (без округлений).

Реальные же вычисления базируются на арифметике машинных (т.е. усеченных до определенного количества разрядов) чисел. Как отражается на результате решения системы подмена арифметики действительных чисел машинной арифметикой, зависит от самой решаемой системы, параметров применяемого компьютера и системы представления данных, способов реализации алгоритмов. В любом случае, практически вместо точного решения СЛАУ прямой метод дает приближенное решение*) (обозначим его х(0)). Подставив х(0) в выражение ξ:=f-Ax, называемое невязкой, по малости полученного вектора значения ξ(0)=f-Ax(0) можно с осторожностью судить о близости найденого решения x(0) к точному решению x. Если, напимер,

|| ξ(0)|| - недостаточно малая величина, то следует искать вектор-поправку p такой, что x(0)+р=х есть точное решение системы

т.е. А(х(0)+р)=f.

Последнее равносильно векторно матричному уравнению

Ар = ξ(0).

Таким образом, нахождение поправки сводится к решению такой же системы, как и

,

где в качестве вектора свободных членов должен быть взят вектор невязок.

1.3.3 Апостериорная оценка погрешности.

1.3.4 Пример

1.4 Метод релаксации

1.4.1 Пример


2 Практическая часть

2.1 Таблица идентификаторов

trrr(a,f,x,m)Функция, возвращающая матрицу невязок
prr(a,r,m)Функция, возвращающая матрицу поправок
maxv(v,el)Функция, возвращающая модуль максимального элемента вектора v
switchColumns(A,n1,n2,m)Функция, возвращающая матрицу, полученную из А путем перестановки n1-ого и n2-ого столбцов
Podgotovka(A,m)Функция, возвращающая 2 матрицы: матрицу, полученную из A перестановкой столбцов и пригодную для проведения вычислений; вектор, содержащий порядок следования неизвестных (1, 2,… n для x1, x2…xn соответственно) в уравнениях
rotation(a,f,m,e)Функция, реализующая метод вращения. Возвращает 2 матрицы: неизвестных и поправок
aМатрица коэффициентов
fМатрица свободных членов
xМатрица неизвестных
mКоличество неизвестных
eТочность, с которой необходимо производить вычисления

2.2 Листинг программы


2.3 Пример.

Подсчитаем матрицу неизвестных(Otvet1) и матрицу поправок(Otvet2)

Для сравнения, погрешность метода Гаусса:

Таким образом, можно говорить о том, что, действительно, метод вращений более точен.

2.4 Сравнительная таблица


Заключение

В данной работе был рассмотрен метод релаксации решения систем линейных алгебраических уравнений. Была подробно рассмотрена теоретическая часть, из которой выводятся различные формулы для реализации данного метода. А также было выполнено сравнение метода релаксации с методами простой итерации и Зейделя. Программная реализация выше описанных методов представлена в приложении А.

По результатам работы можно сделать следующие выводы. Во-первых, скорость сходимости метода релаксации превышает скорости сходимости методов простой итерации и Зейделя. Во-вторых, скорость сходимости напрямую зависит от выбора параметра релаксации. Таким образом, данный метод удобен для решения СЛАУ средней размерности.

Еще одно достоинство итерационного метода верхних релаксаций состоит в том, что при его реализации на ЭВМ алгоритм вычислений имеет простой вид и позволяет использовать всего один массив для неизвестного вектора.


Библиографический список

1) Вержбицкий В. М. Основы численных методов: Учеб. пособие для вузов / В. М. Вержбицкий. - М. : Высш. шк. , 2002. - 840 с.

2) И.Г. Серебренникова, Г.М. Коринченко, Вычислительная математика. МГТУ им Г.И. Носова 2003г. 146с

3) Е. Волков.Численные методы. М.,1987, 248 с.

4) А. И. Плис, Н. А. Сливина. Лабораторный практикум по высшей математике. - М.: "Высшая школа", 1983.

5) Калиткин Н.Н. Численные методы. М.: Наука, 1978, 512 с.

6) Демидович Б.П., Марон И.А. Основы вычислительной математики. -М.: Наука, 1966 г., 664 стр.

7) Фадеев Д.К., Фадеева В.Н. Вычислительные методы линейной алгебры. М. Физматлит, 1960.

8) Воеводин В.В. Вычислительные основы линейной алгебры. - М.: Наука, 1977. - 304 с.

9) А. Самарский. Введение в численные методы. М.,1988, 270 с.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Экономика
Маркетинг
Информатика
icon
109993
рейтинг
icon
2705
работ сдано
icon
1238
отзывов
avatar
Математика
Физика
История
icon
103781
рейтинг
icon
5281
работ сдано
icon
2378
отзывов
avatar
Химия
Экономика
Биология
icon
74482
рейтинг
icon
1858
работ сдано
icon
1172
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
48 894 оценки star star star star star
среднее 4.9 из 5
БГТУ военмех
Спасибо большое за качественно выполненную работу! Сдано даже раньше срока
star star star star star
СИБИТ
Исполнитель выполнил задание по предмету "Управленческие решение", реферат зачтен, работа ...
star star star star star
СИБИТ
Работа выполнена хорошо! Не первый раз обращаюсь , рекомендую исполнителя!!!
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

в любом формате

Решение задач, математические основы судовождения

Срок сдачи к 9 дек.

только что

Разработка IT-продукта

Курсовая, Анализ и моделирование бизнес-процессов

Срок сдачи к 8 дек.

1 минуту назад

География/физ-ра/обж 1 курс колледж. уровень простой.

Решение задач, География

Срок сдачи к 15 дек.

1 минуту назад

Прочитайте высказывания писателей и ученых. Выполните задания:

Контрольная, Русский язык

Срок сдачи к 23 дек.

2 минуты назад

Написать эссе на выбор из двух книг

Эссе, Социология

Срок сдачи к 15 дек.

2 минуты назад

решить не по правилу лопиталя

Решение задач, Математика

Срок сдачи к 7 дек.

3 минуты назад

Добрый день! Помогите, пожалуйста, решить 4 задачи:

Решение задач, физика

Срок сдачи к 8 дек.

3 минуты назад

Помочь решить задач (бух учет) 23 числа в 17:00

Тест дистанционно, Бухгалтерский учет

Срок сдачи к 23 дек.

3 минуты назад

Скрайбинг

Другое, Экология

Срок сдачи к 11 дек.

3 минуты назад

Задачи

Решение задач, Правоведение

Срок сдачи к 31 дек.

3 минуты назад
4 минуты назад

Выполнять задание ориентируясь на структуру работы

Контрольная, Психология

Срок сдачи к 13 дек.

5 минут назад

Нужно написать курсовую работу « Разработка базы данных»

Курсовая, Информатика и программирование

Срок сдачи к 18 дек.

5 минут назад

Реферат не более 15 страниц

Реферат, Физическая культура и спорт

Срок сдачи к 14 дек.

5 минут назад

судебный процесс в россии по соборному уложению 1649 г

Курсовая, история государства и права

Срок сдачи к 14 дек.

6 минут назад

Решить 3 задачи

Контрольная, Физика

Срок сдачи к 9 дек.

6 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход или
регистрация
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно