Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

pencil
Узнай стоимость на индивидуальную работу!
icon Цены в 2-3 раза ниже
icon Мы работаем
7 дней в неделю
icon Только проверенные эксперты

Решение прикладных задач численными методами

Тип Реферат
Предмет Информатика
Просмотров
1174
Скачиваний
858
Размер файла
412 б
Поделиться

Решение прикладных задач численными методами

Кафедра №83

информатики и вычислительной математики

Дисциплина: «ИНФОРМАТИКА»

КУРСОВАЯ РАБОТА

Тема: «Решение прикладных задач численными методами»

Москва 2009 г.

ЦЕЛЬ РАБОТЫ:

Получение практических навыков по применению численных методов при решении прикладных задач на ЭВМ общего назначения, с использованием программ сложных циклических алгоритмов, включая редактирование программ в ЭВМ, отладку программ, выполнение расчетов на периферийные устройства.

Время: 12 часов.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

Работа состоит из 2-х частей.

Цель первой части курсовой работы: получить практические навыки в использовании численных методов решения не линейных уравнений используемых в прикладных задачах.

Для выполнения 1 части работы необходимо:

· Составить программу и рассчитать значения функции в левой части нелинейного уравнения для решения задачи отделения корней;

· Составить логическую схему алгоритма, таблицу идентификаторов и программу нахождения корня уравнения методом дихотомии и методом, указанным в таблице;

· Ввести программу в компьютер, отладить, решить задачу с точностью ε=0,0001 и вывести результат;

· Предусмотреть в программе вывод на экран дисплея процессора получения корня.

Задание на выполнение первой части курсовой работы:

Вариант №21.

Уравнение: 0,25x3+x-1,2502=0:

Отрезок, содержащий корень: [0;2].

I. Математическое описание численных методов решения

Метод деления отрезка пополам (метод дихотомии).

Этот метод позволяет отыскать корень уравнения с любой наперёд заданной точностью εε . искомый корень xуравнения уже отделен, т.е.указан отрезок [а, в] непрерывности функции f(x) такой, что на концах этого отрезка функция f(x) принимает различные значения:

f(a)*f(b)>0

В начале находится середина отрезка [ a, b ]:

и вычисляется значение функции в точке с, т.е. находится f(c). Если f(c)=0, то мы точно нашли корень уравнения. Если же f(c)≠0 ,то знак этой величины сравнивается со знаками функции y= f(x) в концах отрезка [ a, b ]. Из двух отрезков [ a, с], [ с, b ] для дальнейшего рассмотрения оставляется тот, в концах которого функция имеет разные знаки. С оставленным отрезком поступаем аналогичным образом. расчет прекращается, когда оставленный отрезок будет иметь длину меньше 2ε. В этом случае принимаем за приближенное значение корня середину оставленного отрезка и требуемая точность будет достигнута.

II. График функции.

Для выделения корней рассчитаем значения функции на заданном отрезке [0,2] с шагом 0,0001 и по полученным данным построим график функции.

Как видно из рисунка график пересекает ось Х один раз, следовательно, на данном отрезке [ 0, 2] наше уравнение имеет один корень.

Алгоритмы нахождения корней уравнения

I. Cтруктурная схема алгоритма: Метод дихотомии

f(a0), f(b0)


да

x=c

an+1=an ; bn+1=c

an+1= c ; bn+1= bn

n=n+1

X=an+bn

2


Листинг программы имеет вид

#include<stdio.h>

#include<math.h>

double f(double x)

{

return 0.25*(pow(x,3))+x-1.2502;

}

int main(void)

{

int n=0;

double x,a=0.,b=2.,eps=0.0001;

while (fabs(a-b)>2*eps)

{

x=(a+b)/2,

n++;

printf("step=%3i x=%11.8lf f(x)=%11.8lfn",n,x,f(x));

if (f(x)==0)

{

printf("Tothnii koreni x=%lfnkolithestvo iteratsii n=%in",x,n);

return 0;

}

else if (f(a)*f(x)<0) b=x;

else a=x;

}

printf("Reshenie x=%11.8lf pri Eps=%lfnkolithestvo iteratsii n=%in",x,eps,n);

return 0;

}

Метод хорд:

1. Этот метод заключается в том, что к графику функции проводится хорда. Находим точку пересечения с осью OX и опускаем из этой точки прямую параллельную OY. Из точки пе-ресечения прямой и графика проводим хорду и операция повторяется до тех пор, пока точка пересечения хорды с осью OX не приблизиться к корню функции до заданной погрешности.

Шаг первый:

Нас интересует точка пересечения с осью ОХ.

Сделаем допущение: х=x1

y=0

Введем обозначение

x0

f()=f(x0)

Подставим в уравнение

Отсюда

x1=x0-

Шаг второй:

x2=x1-

Для n-го шага:

xn=xn-1-

Условием нахождения корня является:

2. Нелинейное уравнение и условие его решения: 0,25x3+x-1,2502=0:

3. График функции:

4. Схема алгоритма:


5. Таблица идетификаторов:

ОбозначениеИдентификаторТип
nnint
adouble
bdouble
epsdouble
xxdouble
f(x)f(x)double

6. Листинг программы:

#include<stdio.h>

#include<math.h>

double f(double x)

{

return 0.25*(pow(x,3))+x-1.2502;

}

int main(void)

{

FILE*jad;

jad=fopen("D:text.txt","w");

int n=0;

double x,a=0,b=2.,eps=0.0001,xn;

xn=a;

while (fabs(xn-x)>eps)

{

x=xn;

n++;

xn=x-f(x)*(b-x)/(f(b)-f(x));

printf("step=%3i x=%11.8lf f(x)=%11.8lfn",n,xn,f(xn));

fprintf(jad,"step=%3i x=%11.8lf f(x)=%11.8lfn",n,xn,f(xn));

}

printf("pribligennoe znathenie x=%lf pri Eps=%lfnkolithestvo iterasii n=%in",xn,eps,n);

fprintf(jad,"pribligennoe znathenie x=%lf pri Eps=%lfnkolithestvo iterasii n=%in",xn,eps,n);

fclose(jad);

return 0;

}

7. Листинг решения:

Анализ результатов:

метод дихотомииметод хорд
значение корня-0.28766-0.287700
значение функции-0.000045-0.00002140
количество итераций136

Вывод: Метод дихотомии прост в реализации, но обладает малой скоростью сходимости по сравнению с методом хорд, что выражается в количестве шагов. Метод хорд к тому же обладает большей точностью.


Часть 2

Использование численных методов решения дифференциальных уравнений для тактико-специальных задач

Вариант №21.

Задание на выполнения второй части курсовой работы:

Дифференциальное уравнение:

Точное решение уравнения:

Начальные условия:x0 = 0 , y0 =0, xmax=2.

Метод решения: метод Эйлера-Коши, Δx = 0,01; 0,005; 0,001.

Метод Эйлера-Коши

Метод Эйлера-Коши (или усовершенствованный метод Эйлера) является методом второго порядка и заключается в следующем. Интегральная кривая на каждом шаге интегрирования заменяется прямой с тангенсом угла наклона, равным среднему арифметическому тангенсов углов наклона касательных к искомой функции в начале и в конце шага. Вычисления проводятся в следующем порядке:

1. Выбираем шаг интегрирования .

2. Полагаем номер шага .

3. Вычисляем , находим оценку для приращения функции на этом шаге методом Эйлера , , вычисляем среднее арифметическое тангенсов углов наклона и окончательно получаем:

.

4. Если , то увеличиваем номер шага на единицу и повторяем п.3. В противном случае переходим к выполнению п.5.

5. Оформляем полученный результат.

Достоинство метода – более высокая точность вычисления по сравнению с методом Эйлера. Недостаток – больший объем вычислений правых частей.

Таблицаидентификаторов:

ОбозначениеИдентификаторТип
ssint
iiint
xxfloat
xmaxx_maxfloat
x1x1float
Δxh[i]float
yyfloat
ddfloat
f(x)f(x)float
kk(x,y)float
K1f1float
K2f2float
K3f3float
K4f4float

Схемаалгоритма:


6. Листинг программы:

#include<stdio.h>

#include<math.h>

int s,i;

double x, x1, x_max=2, y, d, q;

double h[3]={0.01,0.005,0.001};

double k(double x,double y )

{

return ((x)/(4+(pow(x,4))));

}

double e(double x)

{

return 0.25*atan(pow(x,2)/2);

}

double f1=k(x,y);

double yw=y+f1*h[i];

double r=x+h[i];

double fl=k(r,yw);

int main(void)

{

FILE*sev;

sev=fopen("E:result34.xls","w+");

for (i=0;i<=2;i++)

{

s=0; y=0;

fprintf(sev,"h(%i)=%lfn",i,h[i]);

for(x=0;x<=x_max;x+=h[i])

{

s++;

x1=x+h[i];

y+=(f1+fl)*h[i]/2;

d=y-e(x1);// y- pribl. f(x)- tochnoe

printf(" step =%4.i x=%6.4lf ty=%6.4lf yt=%6.4lf d=%10.8fn",s,x1,y,e(x1),d);

fprintf(sev," t step =t%4.it x=t%10.5lft y=t%10.5lft yt=t%10.5lft d=t%10.5fn",s,x1,y,e(x1),d);

}

}

fclose(sev);

return 0;

}

Вывод:

Интегрированная среда Visual С позволяет обрабатывать программы, записанные на языке С++ . Для программирования циклических алгоритмов были использованы операторы организации циклов с параметрами, решение использует форматируемый вывод и оператор присваивания, а также использовались операторы вызова функций. Чем больше шаг, тем точнее вычисления.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Экономика
Маркетинг
Информатика
icon
113201
рейтинг
icon
2762
работ сдано
icon
1252
отзывов
avatar
Математика
Физика
История
icon
107621
рейтинг
icon
5381
работ сдано
icon
2415
отзывов
avatar
Химия
Экономика
Биология
icon
75673
рейтинг
icon
1881
работ сдано
icon
1192
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
49 108 оценок star star star star star
среднее 4.9 из 5
Оксфордский университет
Работа выполнена ДОСРОЧНО! А так же качественно! Советую автора! Большое спасибо!
star star star star star
ТУСУР
Большое спасибо Алексею! Работа выполнена раньше срока, замечаний и доработок нет.
star star star star star
Московский Университет имени С.Ю. Витте
Спасибо огромное исполнителю, работа выполнена очень быстро, без замечаний , оценка 90 бал...
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Улучшить уникальность

Статья, Методология НИР студентов

Срок сдачи к 8 февр.

только что

Сделать отчет

Отчет по практике, экономика и аудит

Срок сдачи к 24 февр.

только что

реферат

Реферат, Психология и педагогика

Срок сдачи к 13 февр.

только что

Производств. Технологическая практика

Отчет по практике, Менеджмент

Срок сдачи к 10 февр.

только что

Геометрия

Решение задач, Геометрия

Срок сдачи к 6 февр.

1 минуту назад

Наладка электрооборудования

Контрольная, Мдк 02.03 «наладка электрооборудования»

Срок сдачи к 10 февр.

3 минуты назад

Онлайн помощь на экзамене по математике

Онлайн-помощь, Высшая математика

Срок сдачи к 22 февр.

3 минуты назад

Решить 2 задачи

Контрольная, прикладная математика

Срок сдачи к 15 февр.

4 минуты назад
4 минуты назад

Анализ

Сочинение, Философия

Срок сдачи к 8 февр.

4 минуты назад

Сделать доработку ВКР.

Диплом, Экономическая безопасность

Срок сдачи к 10 февр.

4 минуты назад

Курсовая проектного типа

Курсовая, Гражданское право

Срок сдачи к 17 февр.

5 минут назад
6 минут назад

Эссе - признание на тему "Я горжусь..

Эссе, Педагогика и психология

Срок сдачи к 8 февр.

6 минут назад

Решить задачу по тсса

Контрольная, Теория систем и системный анализ

Срок сдачи к 7 февр.

7 минут назад

Написать курсовой проект

Курсовая, Аппаратно-программное конфигурирование компьютерных систем и комплексов, информатика

Срок сдачи к 20 февр.

9 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход или
регистрация
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно