Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

pencil
Узнай стоимость на индивидуальную работу!
icon Цены в 2-3 раза ниже
icon Мы работаем
7 дней в неделю
icon Только проверенные эксперты

Интеграл по поверхности первого рода

Тип Реферат
Предмет Математика
Просмотров
1068
Скачиваний
900
Размер файла
349 б
Поделиться

Интеграл по поверхности первого рода

Содержание

1) Интеграл по поверхности первого рода

2) Специальные векторные поля

3) Теорема Стокса

4) Потенциальное поле

Литература

векторное потенциальное поле интеграл


Интеграл по поверхности первого рода

Физические задачи приводящие к поверхностному интегралу могут быть двух типов:

1) не связана с направлением нормали к поверхности

Например, задачи об отыскании массы или заряда распределенных по поверхности:

2) - зависит от направления нормали -задача об отыскании потока жидкости в направлении нормали.

Дано: -непрерывная функция на

-поверхность:

1) Разобьем поверхность на n частей

2) Возьмем точку

3) Вычислим -плотность

4) -масса


Следовательно

,

где D- проекция на плоскость XOY

Пример.

,

Пример. Определить массу, распределенную на поверхности , плотностью

Решение.


Специальные векторные поля.

1 Дивергенция.

2 Соленоидальные поля. Свойства.

3

1. Определение дивергенции

Теорема Остроградского -Гаусса

Пример.

Найти поток вектора направленный в отрицательную сторону оси Ох, через часть параболоида отсекаемый плоскостью

Решение:


Ответ.

Свойства соленоидальных полей.

Определение. Векторное поле , для всех точек которого называется соленоидальным в области . Соленоидальное поле свободно от источников.

Свойства соленоидальных полей.

1. Если соленоидальное поле задано в односвязной области, то поток вектора через любую замкнутую поверхность этой области равно нулю.

Пусть - соленоидальное поле в односвязной области. Тогда поток вектора через любую поверхность натянутую на заданный контур Г, не зависит от вида этой поверхности, а зависит лишь от контура.


применим теорему Остроградского-Гаусса.

2. Свойства векторной трубки.

Определение. Векторной линией называется линия в каждой точке которой направление касательной к ней совпадает с направлением поля .

векторной линии .

Возьмем в поле замкнутый контур и проведем через его точки векторные линии

Любая другая векторная линия проходящая через точки контура проходит либо внутри трубки либо вне трубки.

В случае потока жидкости , векторная трубка -это часть пространства, которую заполняет при своем перемещении объем жидкости.

Интенсивностью векторной трубки называется поток поля через поперечное сечение этой трубки.

3. Если поле соленоидальное в односвязной области , то интенсивность векторной трубки постоянна вдоль всей трубки.

Доказательство:

- боковая поверхность, векторные линии перпендикулярны . Следовательно (нормаль к есть нормаль поля т.е. )

и имеют противоположные направления.

.

Поток через любое поперечное одно и тоже если соленоидальное.

4. В соленоидальном поле векторные линии не могут ни начинаться ни заканчиваться внутри поля. Они либо замкнуты, либо имеют концы на границе поля, либо имеют бесконечные ветви.

Доказательство:

По свойству 3 интенсивность трубки одинакова , хотя поперечное сечение в точке М равно нулю, в т М . Это невозможно т.к. непрерывен в любой точке.


Теорема Стокса.

Вихрь. Ротор.

Циркуляция.

1. Теорема Стокса

.

С понятием циркуляции тесно связано понятие ротора или вихря. Локальной характеристикой поля связанной с завихренностью является ротор.

Плоское поле.

S площадь внутри

поле скоростей текущей жидкости


В поле поместим колесо с лопастями, вдоль . Частицы жидкости, действуя на эти лопасти создадут вращательный момент, суммарное действие которых приведут колесо во вращение вокруг своей оси. Вращательное действие поля скоростей жидкости будет в любой точке М характеризовать на касательной к окружности , т.е. скалярное произведение . Суммирование вращательных действии жидкости по всему контуру колесика приведут к понятию циркуляции вектора =

Будет определять угловую скорость вращения колеса, а знак циркуляции покажет в какую сторону вращается колесико относительно выбранного направления.

Циркуляция любого поля определяет его вращательную способность вокруг данного направления и характеризует завихренность поля в этом направлении.

Чем меньше тем больше циркуляция, больше завихренность.

. Максимум вихря, если

- плотность циркуляции в точке .


Если пространственное поле, то можно говорить о завихренности в направлении .

- завихренности в направлении .

Определение: в точке называется вектор, проекция которого на каждое направление равна пределу отношения циркуляции векторного поля по контуру в плоской области , перпендикулярной этому направлению , к величине площади S этой области, когда , а область стягивается в точке т. е.,

- контур лежащий в плоскости перпендикулярной к вектору

Теорема Стокса. -поверхностно-односвязная область. - кусочно- гладкий контур в , -кусочно-гладкая поверхность натянутая на .


Следовательно циркуляция вектора вдоль равна потоку - вихря через в направлении

Теорема 2.

В частности

.


Пример. Найти циркуляцию по сечению сферы плоскостью .

Решение.

Потенциальное поле.

Свойства.

Потенциал поля.

Восстановление потенциала U(M) по

Потенциальное поле.

Определение. Векторное поле называется потенциальным в области , если существует скалярное поле является полем градиента этого скалярного поля .


;.

Поле -называется потенциалом поля .

Свойства: 1) Если потенциальное поле определяется однозначно с точностью до ..

2) Если -потенциальное , т.е. не зависит от пути интегрирования, а только от начала и конца пути.

3) Чтобы поле было потенциальным, необходимо чтобы был полным дифференциалом некоторой функции

Если -потенциальное, то для вычисления криволинейного интеграла достаточно найти разность

4) не зависит от пути интегрирования,

Для того чтобы поле было потенциальным, необходимо чтобы оно было безвихревым.

Нахождение потенциала векторного поля

Пример.

1) потенциальное ли поле?

2) Найти

1)

2)

Пример. Потенциал поля скоростей текущей жидкости . Вычислить количество жидкости, протекающей за единицу времени через отрезок прямой от О(0;0) до А(1;1).


Поток

Доказательство:

=.

В потенциальном поле циркуляция по замкнутому контуру равна нулю.

1. Поток

.

Для поля замкнутого поток равен нулю.

Пример. Вычислить поток и циркуляцию вдоль замкнутого контура

Поток


Циркуляция

II способ. Поток в плоском поле

Поток

Циркуляция

В плоском поле


Литература.

1. Ильин В.А. , Садовничий В.А., Сендов Б.Х. Математический анализ. 1-2 том. Изд. МГУ,1989г.

2. Виноградова И.А. , Олексич С.Н., Садовничий В.А. Задачи и упражнения по математическому анализу. Часть 1,2 Изд. МГУ. Серия классический университетский учебник 250 летию МГУ 2005г.

3. Шилов Г.Е. Математический анализ. Часть 1,2. Москва. Изд.Лань. 2002г.-880стр.

4. Лунгу К.Н. Сборник задач по математике. Часть 1,2. Москва. Айрис пресс 2005г.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Экономика
Маркетинг
Информатика
icon
115259
рейтинг
icon
2801
работ сдано
icon
1262
отзывов
avatar
Математика
Физика
История
icon
112277
рейтинг
icon
5480
работ сдано
icon
2470
отзывов
avatar
Химия
Экономика
Биология
icon
76745
рейтинг
icon
1889
работ сдано
icon
1198
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
49 209 оценок star star star star star
среднее 4.9 из 5
СибАДИ
Работа выполнена очень качественно, быстро и в соответствии с метадичкой
star star star star star
СибАДИ
Работа выполнена без замечаний, все качественно и быстро, спасибо. Буду заказывать еще
star star star star star
СибАДИ
Заказ выполнен на отлично, оформление как и просил все на высшем уровне
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Курсовая, Менеджмент

Курсовая, Менеджмент

Срок сдачи к 2 апр.

только что

Отчет по практике по предмету «Экономика и бухгалтерский учет»

Отчет по практике, Экономика и бухгалтерский учет

Срок сдачи к 8 апр.

только что

Выполнить 3 задания в приложенных файлах (МЭИ)

Решение задач, Компьютерные сети

Срок сдачи к 31 мар.

2 минуты назад

Решить задача

Решение задач, Методы математического моделирования, математика

Срок сдачи к 27 мар.

2 минуты назад

Кадровая политика организации

Статья, Управление персоналом

Срок сдачи к 29 мар.

3 минуты назад

Тест

Онлайн-помощь, Математика

Срок сдачи к 24 мар.

3 минуты назад

Региональная экономика ММУ

Решение задач, региональная экономика

Срок сдачи к 25 мар.

5 минут назад

Мировой экономический кризис и пути выхода из него

Реферат, мировая экономика

Срок сдачи к 3 апр.

5 минут назад

Домашнее творческое задание. Как эссе схоже.

Эссе, административное право

Срок сдачи к 29 мар.

5 минут назад

3. Какой должна быть толщина стеклянной пластинки

Решение задач, Физика

Срок сдачи к 1 апр.

6 минут назад

Тестирование по макроэкономике

Тест дистанционно, Макроэкономика

Срок сдачи к 25 мар.

7 минут назад

шифр 15

Контрольная, основы животноводства, сельское хозяйство

Срок сдачи к 7 апр.

8 минут назад

Курсовая

Курсовая, Филология

Срок сдачи к 26 мар.

8 минут назад

Решить задачу по отраслевым рынкам

Решение задач, Экономика

Срок сдачи к 1 апр.

8 минут назад

Решить задание 4) и 5) в практике

Решение задач, Математика

Срок сдачи к 24 мар.

9 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход или
регистрация
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно